
Pt-R136 626 PROOF CHECKING THE RSA (RIVEST SNAMIR AND ADLENRN) 1/i
PUBLIC KEY ENCRYPTION.. (U) TEXAS UNIV AT AUSTIN INST
FOR COMPUTING SCIENCE AND COMPUTERRR..

UNCLASSIFIED R S BOYER ET AL. SEP 82 ICSCA-CNP-33 F/G 12/1 NL

EEEEEEEEEEoiEEEEEEEEEEEEEEE
lllllNll

111110 1.02.0

- 1111.8

MICROCOPY RESOLUTION TEST CHART

NATIONAL. BUREAU OF STANDARDS- 1963-A

% r t u t L . % %I I t. A 1 I0I N ki t H I " -A l
i

(W h . l) D . I . W d) *EA ST

REPORT DOCUMENTATION PAGE UFFOF COMPLETING -'DM

I. REPORT NUMBER j2. GOVT ACCESSION NO. 3. kECIPIENT'S CATALOG NUMBER

4 TITLE 'and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

PROOF CHECKING THE RSA PUBLIC KEY ENCRYPTION Technical
ALGORITHM 6. PERFORM'NG ORG. REPORT NUMBER

7. AUTMOR(@) 8. CONTRACT OR GRANT NUMBER'&)

0 SMCS-8 02943

0 Robert S. Boyer & J Strother Moore N00014-81-K-0634 .

9. PERFORMING ORGANIZATION NAME AND ADDRESS M0. PROGRAM ELEMENT, PROJECT, TASK
AREA 6 WORK UNIT NUMBERS

Institute for Computing Science & Computer
r" Applications, The University of Texas at Austin, NR 049-500

Main Building 2100, Austin, Texas 78712
Ir t1 CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE -

Software Systems Science Office of Naval Research September. 1982
National Science Found. 800 N. Quincy St 13. NUMBER OF PAGES

Washington, DC 20550 Arl(noton. VA 2227
14 MONITORING AGENCY NAmE a ADDRESS(If differenft from Control ingl Office) iS. SECUfRI Y CLASS. (of this report)

Unclassified

ISO. DECLASSI FICATION/DOWNGRADING
SCHEDULE

16. DISTRIBL,TION STATEMENT to thic Reonpl"I ~s document has bees cipproved
for pb~ eoam cind sale, 10"

.7. CS RBUTION STATEMENT (of the astbeact en red n Block 20, i di ent Ir, R ort)

JUL 2 5 1060

19 SUPPLEMENTARY NOTES

19. KEY WORDS (Colntnue on reverse side I necesemry and identify by block number) A -

Automatic theorem-proving, Fermat's theorem, number theory, pigeon hole
principle.

20. ABSTRACT (Continue an reverse sde it neceeseand Ideify by block nu mbe r) The authors describe the us(
f a mechanical theorem-prover to check the published proof of the invelqibilit•

of the public key encryption algorithm of Rivest,:Shamir and Adleman:(U mod n)".
mod nfM, provided n is the product of two distinct primes p and q, M<n, and e
and d are multiplicative inverses in the ring of integers modulo (p-1)*(q-1). ..

Among the lemmas proved mechanically and used in the ma _Aroof are many familia
theorems of number theory, including Fermat's theorem: '- mod p=1, when p is
prime and p1M. The axioms underlying the proofs are those of Peano arithmetic

and ordered pairs.,o-

DD 1473 E0ON NOV 65 IS OBSOLETES 014.6601 Itnr, 1 = i4 j, .
S 1;2SECuRITY CLASIFI-6CA-TION OR THIS PAGE (foen Dole 6n;tred)

8 07 6 108:

V- V, V 7,

Abstract

We describe the use of a mechanical theorem-prover to check the published

proof of the invertibility of the public key encryption algorithm of Rivest,

Shamir and Adleman: (Me mod n)d mod n = M, provided n is the product of two

distinct primes p and q, M<n, and e and d are multiplicative inverses in the

ring of integers modulo (p-1)*(q-1). Among the lemmas proved mechanically and

used in the main proof are many familiar theorems of number theory, including

Fermat's theorem: MP 1 mod p = 1, when p is a prime and pIM. The axioms

underlying the proofs are those of Peano arithmetic and ordered pairs.

Key Words: automatic theorem-proving, Fermat's theorem, number theory,

pigeon hole principle.

AcCe $ionl 10?

biTIS GAVI
DT:C TAB

ifcarlo

Distribution/- --
SAvailability CodeS__

- Iavi nd/or

Diet i Special io c

COPI°

1"OPECTO

2.

2

PROOF CHECKING THE RSA PUBLIC KEY ENCRYPTION ALGORITHM

The development of mathematics toward greater precision has led, as
is well known, to the formalization of large tracts of it, so that one
can prove any theorem using nothing but a few mechanical rules.
-- Gbdel [5]

But formalized mathematics cannot in practice be written down in
full, and therefore we must have confidence in what might be called
the common sense of the mathematician ... We shall therefore very
quickly abandon formalized mathematics ... -- Bourbaki [1l

1. Introduction

A formal mathematical proof is a finite sequence of formulas, each element

of which is either an axiom or the result of applying one of a fixed set of

mechanical rules to previous formulas in the sequence. It is thus possible to

write a computer program to check mechanically whether a given sequence is a

formal proof. However, formal proofs are rarely used. Instead, typical

proofs in journal articles, textbooks, and day-to-day mathematical

communication use informal notation and leave many of the steps to the

reader's imagination. Nevertheless, by transcribing the sentences of the

proof into a formal notation, it is sometimes possible to use today's

automatic theorem-provers to fill in the gaps between published steps and thus

mechanically check some published, informal proofs.

In this paper we illustrate this idea by mechanically checking the recently

published proof of the invertibility of the public key encryption algorithm

described by Rivest, Shamir, and Adleman [11. We will briefly explain the

idea of public key encryption to motivate the theorem proved.

In Eli) a mathematical function, here called CRYPT, is defined.

CRYPT(M,e,n) is the encryption of message M with key (e,n). The function has

the following important properties:

.4.

-4

1. It is easy to compute CRYPT(M,e,n).

2. CRYPT is "invertible", i.e., if M is encrypted with key (e,) and
then decrypted with key (d,n) the result is M. That is,
CRYPT(CRYPT(M,e,n),d,n) M, under suitable conditions on M, n, e
and d.

3. Publicly revealing CRYPT and (e,n) does not reveal an easy way to
compute (d,n). Public key encryption thus avoids the problem of
distributing keys via secure means. Each user (e.g., a computer on
a network) generates an encryption key and a corresponding
decryption key, publicizes the encryption key to enable others to
send private messages, and never distributes the decryption key.

The function defined in [11] is CRYPT(M,e,n) = Me nod n; in addition,

algorithms are given for constructing e, d, and n so that CRYPT has the three

properties above. The first two properties are proved in [11. The third

property is not proved; instead the authors of [li) argue that "all the

obvious approaches to breaking our system are at least as difficult as

factoring n." Since there is no known algorithm for efficiently factoring

large composites, the security property of CRYPT is obtained by constructing n

as the product of two very large (200 digit) primes.

In this paper we focus on mechanically checking the proofs of the first two

properties. A precise statement of the "invertibility" property is:

CRYPT(CRYPT(M,e,n),d,n) M, if n is the product of two distinct primes p and

q, M<n, and e and d are multiplicative inverses in the ring of integers modulo

(p-1)*(q-1). Our mechanical proof of this theorem requires that we first

prove many familiar theorems of number theory, including Fermat's theorem:

MP-1 mod p =1, when p is a prime and pJM.

2. A Sketch of the Theorem-Prover

The theorem-prover we use is the current version of the system described

in £2]. The theorem-prover deals with a quantifier free first order logic

providing equality, recursively defined functions, mathematical induction, and

inductively constructed objects such as the natural numbers and finite

4

sequences.

The theorem-prover is a large interactive computer program. The main

inputs provided by the user are new recursive definitions and conjectures to

prove.

Before a proposed definition is admitted as a new axiom, certain conditions

are mechanically checked to assure that there exists one and only one function

satisfying the definition. The most important condition is that there exist a

measure of the arguments of the function that is decreasing in a well-founded

sense in each recursive call in the definition. The mechanized definitional

principle can guess simple measures and well-founded relations; more

complicated ones can be supplied by the user. Once a candidate measure and

relation are found, the mechanical theorem-prover is invoked to prove theorems

sufficient to admit the proposed definition.

Given a conjecture to prove, the theorem-prover orchestrates the

application of many proof techniques under heuristic control. The main proof

techniques used are:

- simplification - The system applies axioms, definitions, and

previously proved theorems as rewrite rules to simplify expressions.
For example, if f is a defined function, it is sometimes useful to
replace an instance of f(x) by the corresponding instance of the

definition of f. To avoid looping the simplifier contains elaborate
heuristics to control the use of recursive definitions. One of the
main heuristics is to expand f(x) to introduce a recursive call

provided the arguments to the call already occur in the conjecture.
Axioms and previously proved theorems are also used as rewrite
rules. For example, the theorem

prime(p) -> [plab <-> (pla v pib)].

is used to replace instances of plab by (pla v pib) whenever the
hypothesis prime(p) can be established by simplification. The
simplifier also contains decision procedures for propositional
calculus, equality, and linear arithmetic.' I

p" " " " " ' " " 2 .

LL

5

- elimination of undesirable function symbols - This routine uses
axioms and previously proved lemmas to eliminate certain function
symbols from the conjecture being proved. For example, we can
eliminate expressions such as i mod j and i/j from a conjecture by
appealing to the theorem that for each natural number i and each
positive integer j, there exist natural numbers r<j and q such that
i=r+qj.

-equality substitution - To prove a conjecture of the form
tI = t2 -> p(t1) it is sufficient to prove the more general p(t2).
This transformation is often useful when the former conjecture does
not yield to simplification, the equality t, = t2 is an induction
hypothesis from an earlier induction, and a second induction is to
be used to prove p(t2).

- generalization - To prove a conjecture of the form p(a) -> q(a) it
is sufficient to prove r(x) & p(x) -> q(x), where x is a new
variable symbol and r(a) is a theorem. This transformation is often

useful provided a is not a variable, p(a) and q(a) are the
simplified induction hypothesis and conclusion of an earlier
induction, and induction will be used to prove the transformed
conjecture. The new hypothesis r(x) is assembled by heuristics from
previously proved lemmas about a.

- elimination of irrelevance - To prove a conjecture of the form p ->
q, it is sufficient to prove q. This is useful if p and q share no
variables and there is reason to believe that p is not always false.

- induction - When all else fails, it is useful to try mathematical
induction. The selection of an "appropriate" induction is based on
an analysis of the recursive functions mentioned in the conjecture.
For example, since n! is recursively defined in terms of (n-i)!,
when n is not 0, the presence of n! in a conjecture, p(n), suggests
a simple induction on n. The base case is p(O). In the induction
step, n is non-0, the inductive hypothesis is p(n-1), and the
induction conclusion is p(n). Observe that the n! in the conclusion
can now be expanded by the simplifier and will produce a term
involving (n-i)!, about which we have a hypothesis. Similarly,
since we 4efine i mod j recursively in terms of (i-j) mod j, when
O<j(i, the occurrence of i mod j in a conjecture suggests an
inductive argument in which we suppose O<j(i and take as an
inductive hypothesis the conjecture with i replaced by i-j.

Typically, a conjecture to be proved contains many different
recursive functions and they each suggest different induction
schemas. Our induction mechanism contains many heuristics for
combining and choosing between the suggested inductions. That the
inductions invented by the system are valid may be proved by
considering the well-foundedness theorems proved when reursive
functions are admitted. ,1

"2
"A

r " ' '

6

Readers interested in more details of the theorem-prover should see [2), in

which the system, as of May, 1978, is described at a level of detail

sufficient to permit reproduction of our results. Several chapters of [2) are

devoted to detailed annotated proofs by the system, including its proof of the

uniqueness of prime factorizations. Improvements made to the system since the

publication of [2] include the addition of the linear arithmetic and equality

decision procedures mentioned above, the extension of the definitional

principle to include reflexive functions as described in [10], and a

metafunction facility permitting the incorporation of new simplifiers after

they have been mechanically proved correct [3].

Finally, we have added a primitive "hint" facility so that the user can

tell the theorem-prover how to prove a theorem when its heuristics lead it

down blind alleys. There are two types of hints used in this paper. The

first permits the user to say "use lemma x with instantiation y." The

interpretation of this hint is to obtain the lemma named, instantiate its

variables as directed by y, and add the resulting formula as a hypothesis to

the conjecture being proved. The system then applies its usual heuristics.

The second type of hint is "induct as suggested by the recursion in f" where f

is a previously admitted recursive function.

The theorem-prover is automatic in the sense that once it begins a proof

attempt, no user guidance is permitted. However, every time it accepts a

definition or proves a theorem it stores the definition or theorem for future

use. By presenting the theorem-prover with an appropriate sequence of lemmas

to prove, the user can "lead" it to proofs it would not otherwise discover.

Thus, the distinction between a proof checker and an automatic theorem-prover

blurs once the system remembers and uses previously proved facts. An

automatic theorem-prover merely enables the user to leave out some of the

routine proof steps. A sufficiently good automatic theorem-prover might

enable the user to check an "informal" proof by presenting to the machine no

I " . o . . ' o - o ° -° .= . .- , . . o - , . ,o ° . , -.

; '; ; , _L =' . = _.= =_ .__ * " -. . .

more material than one would present to a human colleague.

When we began the encryption proofs we initialized the theore!n-prover to

the zurrent version of the lemma library listed in Appendix A of [2]. The

library contains several hundred previously proved theorems. Most of the

theorems in this library were irrelevant to the encryption proofs (e.g., there

are many theorems about list processing functions such as REVERSE, FLATTEN,

and SORT). However, among the theorems in the library are many elementary

facts about addition, multiplication, and integer division with remainder.

The deepest number theory result in the library is the uniqueness of prime

factorizations.

3. Correctness of CRYPT

To show that Me mod n is easy to compute -- even when the numbers involved

contain hundreds of digits -- Rivest, Shamir and Adleman exhibit an algorithm

for computing it in order log2 (e) steps. Below we define CRYPT as a recursive

version of their algorithm and prove that it computes the desired function.

The notation e/2 below denotes integer division, i.e., the floor of the

rational quotient.

The material contained in boxes in this paper represents material typed by

the user and checked by the theorem-prover. Our claim is that the boxed

material very closely resembles traditional "informal" proofs. To make this

more obvious to readers unfamiliar ,Lth our formal notation, we have taken the

liberty of transcribing the user type-in into conventional mathematical

English. Use of the phrase "Hint:" in boxed material notes those occasions on

which the user gave the system explicit hints. In section 6 we give the

actual user type-in for the material in Box 1.

I'.- ,

Box 1

We define the encryption algorithm as the recursive function CRYPT:

CRYPT(M,e,n)

if e is not a natural number or is 0,
then 1;

elseif e is even,
then 2
(CRYPT(M,e/2,n))2 mod n;

else
(M (CRYPT(M,e/2,n)2 mod n)) mod n.

Observe that (x*(y mod n)) mod n is equal to (x'y) mod n. It
follows that (a*(b*(y mod n))) mod n is (a*(b*y)) mod n (Hint: let x
be a'b).

CRYPT(M,e,n) is equal to Me mod n, provided n is not 1.

This completes the proof that the algorithm computes the function claimed

in [11. In order to reinforce in the reader's mind the fact that the

theorem-prover assents to these claims only after proving them we offer the

following comments.

Before accepting the definition of CRYPT the theorem-prover guesses that e

decreases in each recursive call and then proves it by showing that when e is

a non-O natural number, e/2 is strictly smaller than e.

CRYPT is simply the "binary method" of computing Me (see [9]), except that

all multiplications are done modulo n. The observation that interior mods can

be dropped -- i.e., that (x*(y mod n)) mod n is (x'y) mod n -- is obviously

important in establishing that CRYPT computes Me mod n. We brought this fact

to the system's attention before even attempting to have the system prove

properties of CRYPT.

9

How did the theorem-prover prove (x*(y mod n)) mod n (x'y) mod n? It

first tried simplification, but no known rewrites could be applied under our

heuristics. The system then decided to to eliminate (y mod n) by replacing y

with r~nq, where r<n. To permit this, the system case split on whether y is a

natural number and n is a positive integer. The "pathological" cases, where y

was not numeric or n was nonpositive, yielded immediately to simplification.

In the case where y was a natural number and n was positive, the system

replaced y with r+nq, where r<n. Thus (y mod n) became r and the left hand

side of the conjecture became xr mod n. On the right, x*y became x*(r+nq).

The simplifier then distributed the multiplication over the addition (using a

previously proved lemma in the library) and obtained (x*r + n*q*x) mod n,

which was further rewritten to xr mod n by the lemma that i+nj mod n is i mod

n. The left and right hand sides were then identical. The machine spent about

23 seconds of cpu time on the proof.

The second observation in the box above is that (a*(b*(y mod n))) mod n is

(a*(b*y)) mod n. This follows trivially from the previous line, by letting x

be (a'b) and applying the associativity of multiplication. Since this

observation is uninteresting to a human proof checker, the need for it in our

mechanical proof exposes a deficiency in our mechanical theorem-prover. Why

is this line needed by the machine? The reason has to do with the order in

which rewrite rules are applied. Consider the term ((a*b)*(y mod n)) mod

n. The lemma just proved can be applied as a rewrite rule from left to right,

to eliminate the interior mod and produce (a*b)*y mod n, to which we can then

apply associativity to get a*(b*y) mod n. However, if we apply associativity

first we obtain a(b*(y*mod n)) mod n, and we can no longer use the first

lemma from left to right. The second observation solves this problem.

1This is the Knuth-Bendix proL in -ite driven simplification. See [7]

for an elegant solution to the pr- .em i, certain cases.

iI

10

We did not anticipate the machine's need for the second observation.

Instead, immediately after making the first observation we thought the machine

could prove that CRYPT computes Me mod n. We commanded it to do so and watched

its proof attempt on the screen. (Imagine watching a colleague proving tile

theorem on the blackboard.) We saw the term (a*(b*(y mod n))) mod n arise and

remain "unsimplified" even though we knew it was (a*(b*y)) mod n. At that

point we interjected with the second observation.

We now consider the machine's acceptance of the final sentence in Box 1,

the claim that CRYPT computes the desired function. The first time we

submitted the claim we did not include the hypothesis that Nil, because the

hypothesis is not noted by Rivest, Shamir and Adleman, who imply that the

algorithm always computes Me mod n. However, the theorem-prover failed to

prove the simpler conjecture and exhibited a formula showing that the

encryption algorithm does not compute Me mod n when e is 0 and n is 1. In

practice, n is always larger than 1, so the additional hypothesis is no

burden.

Tho theorem-prover proved the final claim by induction on e. The base case

is that e is not a natural number or is 0. In the induction step, it supposes

e is positive and assumes the conjecture for e/2. Observe that this induction

is precisely the one suggested by the recursion in CRYPT. The proof required

about 6 minutes of cpu time.

4. Fermat's Theorem

The proof of the invertibility of CRYPT in [11 assumes the reader is

familiar with elementary number theory up through Fermat's theorem. While a

production model proof checker for informal proofs would come factory equipped

with a good number theory library, we had no such library when we began the

encryption proofs. We therefore had the system prove the following theorems:

- Many elementary facts about remainder and exponentiation.

- Suppose p and q are distinct primes, a 5od p b mod p, and a mod q
b mod q. Then a mod pmq b mod p q° Hence, under the additional

hypothesis b<p*q, a mod p*q b.

- Suppose p is a prime and p d es not divide M. Then Mmx mod p = M~y

mod p iff x mod p = y mod p. Hence, by letting y be 1, if p is a
prime, M*x mod p M mod p iff either pIM or x mod p = 1.

- The Pigeon Hole Principle: If L is a sequence of length n, every

element of L is a positive integer, no element occurs twice in L,

and every element of L is less than or equal to n, then L is a

permutation of the sequence [n n-1 ... 2 1].

- The following straightforward observations about permutations and
the concept of the product over (the elements of) a sequence:

* If LI is a permutation of L2 then the product over Li is equal
to that over L2.

The producL over [n n-1 2 1] is n!.

* Hence, if L is a permutation of [n n-1 ... 2 1] then the

product over L is n!.

* If p is a prime and n<p, then p does not divide n!.

2 Cf. Theorem 53 of Hardy and Wright's An Introduction to the Theor. of

Numbers.

3 Cf. Theorem 55 of Hardy and Wright.

-" _ , ' . _ _ ' - - -~ - -! --- n;,,. ,,,- ,-- ,,-. .. , -. .-- - k . ,. -

12

We then had the theorem-prover check the proof of Fermat's theorem in [8].

Box 2

Let S(n,M,p) be the sequence:

[n*M mod p, (n-l)*M mod p, ... , I*M mod p].

The product over S(n,M,p) mod p is equal to n!*Mn mod p. (1)

Observe that if p is a prime that does not divide M and i<j<p, then
j*M mod p is not a member of S(i,M,p) (Hint: induct on i). Hence, if
p is a prime that does not divide M and n<p, then no element of
S(n,M,p) occurs twice. Furthermore, if p is a prime that does not
divide M and n<p, each element of S(n,M,p) is a positive integer.
Moreover, if p>O, each element of S(n,M,p) is less than or equal to
p-1. And, of course, S(n,M,p) has n elements.

Hence, Fermat's theorem. (Hint: From (1) we have that the product

over S(p-1,M,p) mod p is (p-1)!*Mp-1 mod p. But from the Pigeon Hole
Principle we have that S(p-1,M,p) is a permutation of [p-l, ... 2,
1].)

5. Invertibility of CRYPT

We now prove that CRYPT(CRYPT(M,e,n),d,n) M, if n is the product of two

distinct primes p and q, M<n, and e and d are multiplicative inverses in the

ring of integers modulo (p-1)*(q-1).

13

Box 3

For all primes p

(M*Mk*(P- 1)) mod p =M mod p. (2)

Thus, if p and q are prime, we get

(M*Mk*(p- 1)*(q -1)) mod p =M mod p
and (M*Mk (p-1)(q-1)) mod q M mod q

[Hint: take two instantiations of (2).]

Thus, if p and q are distinct primes, M is a natural number less
than pmq, and x mod (p-1)*(q-1) is 1, then

Mx mod p'q M.

Hence, if p and q are distinct primes, n is p'q, M is a natural
number less than n and eld mod (p-1)*(q-1) is 1,
CRYPT(CRYPT(Me,n),d,n) M.

6. Sample Input to the Theorem-Prover

To illustrate the sense in which the boxed material is an English

transcripticn of the user supplied type-in to our theorem-prover, we give

below the type-in for the material in Box 1. We use the prefix syntax of

Church's lambda calculus and McCarthy's LISP. It would be straightforward to

arrange for the system to read and print according to a more elaborate

grammar, but we prefer the simplicity of prefix notation.

14

Definition.
(CRYPT M E N)

(IF (ZEROP E)
1
(IF (EVEN E)

(REMAINDER (SQUARE (CRYPT M (QUOTIENT E 2) N))
N)

(REMAINDER
(TIMES M
(REMAINDER (SQUARE (CRYPT M (QUOTIENT E 2) N))

N))
N)))

Theorem. TIMES.MOD.1 (rewrite):
(EQUAL (REMAINDER (TIMES X (REMINDER Y N)) N)

(REMAINDER (TIMES X Y) N)

Theorem. TIMES.MOD.2 (rewrite):
(EQUAL (REMAINDER (TIMES A (TIMES B (REMAINDER Y N)))

N)
(REMAINDER (TIMES A B Y) N))

Hint: Use TIMES.MOD.1 with X replaced by (TIMES A B).

Theorem. CRYPT.CORRECT (rewrite):
(IMPLIES (NOT (EQUAL N))

(EQUAL (CRYPT M E N) (REMAINDER (EXP M E) N)))

15

7. The Formal Details

We list here all of the user commands typed to lead the theorem-prover from

its initial library to the correctness and invertibility of the RSA algorithm.

7.1. Correctness of CRYPT

This section contains the formalization of the proof in Box 1.

1. Definition.
(CRYPT M E N)

(IF
(ZEROP E)
1
(IF
(EVEN E)
(REMAINDER (SQUARE (CRYPT M (QUOTIENT E 2) N))

N)
(REMAINDER
(TIMES M

(REMAINDER (SQUARE (CRYPT M (QUOTIENT E 2) N))
N))

N)))

2. Theorem. TIMES.MOD.1 (rewrite):
(EQUAL (REMAINDER (TIMES X (REMAINDER Y N)) N)

(REMAINDER (TIMES X Y) N))

3. Theorem. TIMES.MOD.2 (rewrite):
(EQUAL (REMAINDER (TIMES A (TIMES B (REMAINDER Y N)))

N)
(REMAINDER (TIMES A B Y) N))

Hint: Consider:
TIMES.MOD.1 with {X/(TIMES A B))

4. Theorem. CRYPT.CORRECT (rewrite):
(IMPLIES (NOT (EQUAL N 1))

(EQUAL (CRYPT M E N)
(REMAINDER (EXP M E) N)))

7.2. Miscellaneous Theorems

We now lay some ground work used throughout the rest of the proofs. These

lemmas represent the "elementary properties of remainder and exponentiation"

mentioned in the informal proofs. The first important result is event 7,

which states that (a mod n) mod n is (ai) mod n.

- - tC 2 .

16

5. Theorem. TIMES.MOD.3 (rewrite):
(EQUAL (REMAINDER (TIMES (REMAINDER A N) B) N)

(REMAINDER (TIMES A B) N))

6. Theorem. REMAINDER.EXP/LEMMA (rewrite):

(IMPLIES (EQUAL (REMAINDER Y A)
(REMAINDER Z A))

(EQUAL (EQUAL (REMAINDER (TIMES X Y) A)
(REMAINDER (TIMES X Z) A))

T))

7. Theorem. REMAINDER.EXP (rewrite):
(EQUAL (REMAINDER (EXP (REMAINDER A N) I) N)

(REMAINDER (EXP A I) N))

We now proceed to teach the system several commonly used tricks. The

first, event 8, shows the system that m i* j mod n is 1 if mj mod n is 1. To

prove this obvious fact one must use the rewrite rules EXP.EXP and

REMAINDER.EXP "against the grain" of the directed equality.

8. Theorem. EXP.MOD.IS.1 (rewrite):
(IMPLIES (EQUAL (REMAINDER (EXP M J) P) 1)

(EQUAL (REMAINDER (EXP M (TIMES I J)) P)
1))

Hints: Consider:
EXP.EXP with {I/M, J/J, K/Il
REMAINDER.EXP with {A/(EXP M J), N/P)

We next teach the system the trick of establishing (a mod p)=(b mod p) by

considering whether p divides la-bi, and vice versa. We define PDIFFERENCE,

the absolute value of the integer difference of two naturals, in terms of our

function DIFFERENCE, which returns 0 when the subtrahend is larger than the

minuend. We then prove the necessary theorems about PDIFFERENCE and, then at

event 13, we tell the system henceforth not to expand the definition of

PDIFFERENCE.

9. Definition.
(PDIFFERENCE A B)

(IF (LESSP A B)
(DIFFERENCE B A)
(DIFFERENCE A B))

17

10. Theorem. TIMES.DISTRIBUTES.OVER.PDIFFERENCE (rewrite):
(EQUAL (TIMES M (PDIFFERENCE A B))

(PDIFFERENCE (TIMES M A) (TIMES M B)))

11. Theorem. EQUAL.MODS.TRICK.1 (rewrite):
(IMPLIES (EQUAL (REMAINDER (PDIFFERENCE A B) P)

0)
(EQUAL (EQUAL (REMAINDER A P)

(REMAINDER B P))
T))

12. Theorem. EQUAL.MODS.TRICK.2 (rewrite):
(IMPLIES (EQUAL (REMAINDER A P)

(REMAINDER B P))
(EQUAL (REMAINDER (PDIFFERENCE A B) P)

0))
Hint: Disable DIFFERENCE.ELIM

13. Disable PDIFFERENCE

We conclude this subsection by showing the system one last trick: to prove

that (a mod p)=(b mod p), when p is prime, find an m such that p does not

divide m and (mma mod p)=(mb mod p).

14. Theorem. PRIME.KEY.TRICK (rewrite):
(IMPLIES (AND (EQUAL (REMAINDER (TIMES M A) P)

(REMAINDER (TIMES M B) P))
(NOT (EQUAL (REMAINDER M P) 0))
(PRIME P))

(EQUAL (EQUAL (REMAINDER A P)
(REMAINDER 8 P))

T))
Hints: Consider:

PRIME.KEY.REWRITE with {A/M, B/(PDIFFERENCE A B)}

EQUAL.MODS.TRICK.2 with {A/(TIMES M A),

B/(TIMES M B)}

7.3. Theorems 53 and 55

We now prove versions of Theorems 53 and 55 from (6] and observe trivial

corollaries of each. Event 15 is used in the proof of event 16, which is used

in the proof of Theorem 53.

15. Theorem. PRODUCT.DIVIDES/LEMMA (rewrite):
(IMPLIES (EQUAL (REMAINDER X Z) 0)

(EQUAL (REMAINDER (TIMES Y X) (TIMES Y Z))
0))

18

16. Theorem. PRODUCT.DIVIDES (rewrite):
(IMPLIES (AND (EQUAL (REMAINDER X P) 0)

(EQUAL (REMAINDER X Q) 0)
(PRIME P)
(PRIME Q)
(NOT (EQUAL P Q)))

(EQUAL (REMAINDER X (TIMES P Q)) 0))

17. Theorem. THM.53.SPECIALIZED.TO.PRIMES:
(IMPLIES (AND (PRIME P)

(PRIME Q)
(NOT (EQUAL P Q))
(EQUAL (REMAINDER A P)

(REMAINDER B P))
(EQUAL (REMAINDER A Q)

(REMAINDER B Q)))
(EQUAL (REMAINDER A (TIMES P Q))

(REMAINDER B (TIMES P Q))))

18. Theorem. COROLLARY.53 (rewrite):
(IMPLIES (AND (PRIME P)

(PRIME Q)
(NOT (EQUAL P Q))
(EQUAL (REMAINDER A P)

(REMAINDER B P))
(EQUAL (REMAINDER A Q)

(REMAINDER B Q))
(NUMBERP B)
(LESSP B (TIMES P Q)))

(EQUAL (EQUAL (REMAINDER A (TIMES P Q)) B)
T))

Hint: Consider:
THM.53.SPECIALIZED.TO.PRIMES

19. Theorem. THM.55.SPECIALIZED.TO.PRIMES (rewrite):
(IMPLIES (AND (PRIME P)

(NOT (EQUAL (REMAINDER M P) 0)))
(EQUAL (EQUAL (REMAINDER (TIMES M X) P)

(REMAINDER (TIMES M Y) P))
(EQUAL (REMAINDER X P)

(REMAINDER Y P))))

20. Theorem. COROLLARY.55 (rewrite):
(IMPLIES (PRIME P)

(EQUAL (EQUAL (REMAINDER (TIMES M X) P)
(REMAINDER M P))

(OR (EQUAL (REMAINDER M P) 0)

(EQUAL (REMAINDER X P) 1))))
Hint: Consider:

THM.55.SPECIALIZED.TO.PRIMES with [Y/1I

.7

19

7.4. The Pigeon Hole Principle

We are now on our way to Fermat's theorem and must state formally and prove

the Pigeon Hole Principle. The amount of type-in for this theorem is

relatively large. The reason is that the theorem is about concepts not

already in the system's data base and about which the system knows nothing.

Thus, we here have to build up a fair number of facts.

21. Definition.
(ALL.DISTINCT L)

(IF (NLISTP L)
T
(AND (NOT (MEMBER (CAR L) (CDR L)))

(ALL.DISTINCT (CDR L))))

22. Definition.
(LL.LESSEQP L N)

(IF (NLISTP L)
T
(AND (LEQ (CAR L) N)

(ALL.LESSEQP (CDR L) N)))

23. Definition.
(ALL.NON.ZEROP L)

(IF (NLISTP L)
T
(AND (NOT (ZEROP (CAR L)))

(ALL.NON.ZEROP (CDR L))))

24. Definition.
(POSITIVES N)

z

(IF (ZEROP N)
NIL
(CONS N (POSITIVES (SUB1 N))))

25. Theorem. LISTP.POSITIVES (rewrite):
(EQUAL (LISTP (POSITIVES N))

(NOT (ZEROP N)))

26. Theorem. CAR.POSITIVES (rewrite):
(EQUAL (CAR (POSITIVES N))

(IF (ZEROP N) 0 N))

27. Theorem. MEMBER.POSITIVES (rewrite):
(EQUAL (MEMBER X (POSITIVES N))

(IF (ZEROP X) F (LESSP X (ADDI N))))

% , f .. * - - . o . * - . - - ..

20

28. Theorem. ALL.NON.ZEROP.DELETE (rewrite):
(IMPLIES (ALL.NON.ZEROP L)

(ALL.NON.ZEROP (DELETE X L)))

29. Theorem. ALL.DISTINCT.DELETE (rewrite):
(IMPLIES (ALL.DISTINCT L)

(ALL.DISTINCT (DELETE X L)))

30. Theorem. PIGEON.HOLE.PRINCIPLE/LEMMA.1 (rewrite):
(IMPLIES (AND (ALL.DISTINCT L)

(ALL.LESSEQP L (ADDI N)))
(ALL.LESSEQP (DELETE (ADDI N) L) N))

31. Theorem. PIGEON.HOLE.PRINCIPLE/LEMMA.2 (rewrite):
(IMPLIES (AND (NOT (MEMBER (ADDI N) X))

(ALL.LESSEQP X (ADDI N)))
(ALL.LESSEQP X N))

32. Theorem. PERM.MEMBER (rewrite):
(IMPLIES (AND (PERM A B) (MEMBER X A))

(MEMBER X B))

The proof of the Pigeon Hole Principle we give employs an induction

argument the system does not automatically construct. To tell it the

induction argument we want used, we define a recursive function that mirrors

the induction. The proof of the well-foundedness of the recursion justifies

the induction scheme suggested by the function. Our first mechanical proof of

the Pigeon Hole Principle used a machine generated induction, but required

more preliminary work in the form of lemmas about ALL.LESSEQP, DELETE, and

ALL.DISTINCT.

33. Definition.
(PIGEON.HOLE.INDUCTION L)

(IF (LISTP L)
(IF (MEMBER (LENGTH L) L)

(PIGEON.HOLE.INDUCTION (DELETE (LENGTH L) L))
(PIGEON.HOLE.INDUCTION (CDR L)))

T)

34. Theorem. PIGEON.HOLE.PRINCIPLE:
(IMPLIES (AND (ALL.NON.ZEROP L)

(ALL.DISTINCT L)
(ALL.LESSEQP L (LENGTH L)))

(PERM (POSIr[VES (LENGTH L)) L))
Hint: Induct as for (PIGEON.HOLE.INDUCTION L).

.. . , -. . * * . * *..~. . . .

,

21

We conclude this subsection by anticipating our use of the Pigeon Hole

Principle by proving some elegant relations between permutations, products,

the positives and the factorial function.

35. Theorem. PERM.TIMES.LIST:
(IMPLIES (PERM Li L2)

(EQUAL (TIMES.LIST Li)
(TIMES.LIST L2)))

36. Theorem. TIMES.LIST.POSITIVES (rewrite):
(EQUAL (TIMES.LIST (POSITIVES N))

(FACT N))

37. Theorem. TIMES.LIST.EQUAL.FACT (rewrite):
(IMPLIES (PERM (POSITIVES N) L)

(EQUAL (TIMES.LIST L) (FACT N)))
Hint: Consider:

PERM.TIMES.LIST with (L1/(POSITIVES N), L2/L}

38. Theorem. PRIME.FACT (rewrite):
(IMPLIES (AND (PRIME P) (LESSP N P))

(NOT (EQUAL (REMAINDER (FACT N) P) 0)))
Hint: Induct as for (FACT N).

7.5. Fermat's Theorem

This subsection is the formalization of the proof in Box 2.

39. Definition.
(S N M P)

(IF (ZEROP N)
NIL
(CONS (REMAINDER (TIMES M N) P)

(S (SUB1 N) M P)))

40. Theorem. REMAINDER.TIMES.LIST.S:

(EQUAL (REMAINDER (TIMES.LIST (S N M P)) P)
(REMAINDER (TIMES (FACT N) (EXP M N))

P))

41. Theorem. ALL.DISTINCT.S/LEMMA (rewrite):
(IMPLIES (AND (PRIME P)

(NOT (EQUAL (REMAINDER M P) 0))
(NUMBERP Ni)
(LESSP N2 N1)
(LESSP N1 P))

(NOT (MEMBER (REMAINDER (TIMES M NI) P)
(S N2 M P))))

Hint: Induct as for (S N2 M P).

2...

22

42. Theorem. ALL.DISTINCT.S (rewrite):
(IMPLIES (AND (PRIME P)

(NOT (EQUAL (REMAINDER M P) 0))
(LESSP N P))

(ALL.DISTINCT (S N M P)))

43. Theorem. ALL.NON.ZEROP.S (rewrite):
(IMPLIES (AND (PRIME P)

(NOT (EQUAL (REMAINDER M P) 0))
(LESSP N P))

(ALL.NON.ZEROP (S N M P)))

44. Theorem. ALL.LESSEQP.S (rewrite):
(IMPLIES (NOT (ZEROP P))

(ALL.LESSEQP (S N M P) (SUBI P)))

45. Theorem. LENGTH.S (rewrite):

(EQUAL (LENGTH (S N M P)) (FIX N))

46. Theorem. FERMAT.THM (rewrite):
(IMPLIES (AND (PRIME P)

(NOT (EQUAL (REMAINDER M P) 0)))

(EQUAL (REMAINDER (EXP M (SUBI P)) P)
1))

Hints: Consider:
PIGEON.HOLE.PRINCIPLE with WLf(S (SUB1 P) M P)}
REMAINDER.TIMES.LIST.S with {N/(SUB1 P)}

7.6. Invertibility of CRYPT

This subsection is the formalization of the proof in Box 3.

47. Theorem. CRYPT.INVERTS/STEP.1:
(IMPLIES
(PRIME P)
(EQUAL (REMAINDER (TIMES M (EXP M (TIMES K (SUBI P))))

P)
(REMAINDER M P)))

48. Theorem. CRYPT.INVERTS/STEP.1A (rewrite):
(IMPLIES
(PRIME P)
(EQUAL
(REMAINDER

(TIMES M
(EXP M (TIMES K (SUB1 P) (SUB1 Q))))

P)
(REMAINDER M P)))

Hint: Consider:
CRYPT.INVERTS/STEP.1 with {K/(TIMES K (SUBI Q))

23

49. Theorem. CRYPT.INVERTS/STEP.IB (rewrite):
(IMPLIES
(PRIME Q)
(EQUAL
(REMAINDER

(TIMES M
Q) (EXP M (TIMES K (SUB1 P) (SUB1 Q))))
Q)

(REMAINDER M Q)))
Hint: Consider:

CRYPT.INVERTS/STEP.1
with {P/Q, K/(TIMES K (SUBI P))}

50. Theorem. CRYPT.INVERTS/STEP.2 (rewrite):
(IMPLIES

(AND (PRIME P)
(PRIME Q)
(NOT (EQUAL P Q))
(NUMBERP M)
(LESSP M (TIMES P Q))
(EQUAL (REMAINDER ED (TIMES (SUBi P) (SUBI Q)))

1))
(EQUAL (REMAINDER (EXP M ED) (TIMES P Q))

M))

51. Theorem. CRYPT.INVERTS:
(IMPLIES

(AND (PRIME P)
(PRIME Q)
(NOT (EQUAL P Q))
(EQUAL N (TIMES P Q))
(NUMBERP M)
(LESSP M N)
(EQUAL (REMAINDER (TIMES E D)

(TIMES (SUB1 P) (SUB1 Q)))
1))

(EQUAL (CRYPT (CRYPT M E N) D N) M))

24

REFERENCES

1. N. Bourbaki. Elements of Mathematics. Addison Wesley, Reading,
Massachusetts, 1968.

2. R. S. Boyer and J S. Moore. A C uational Logic. Academic Press, New
York, 1979.

3. R. S. Boyer and J S. Moore. Metafunctions: Proving Them Correct and
Using Them Efficiently as New Proof Procedures. In The Correctness Problem in
Computer Science, R. S. Boyer and J S. Moore, Eds., Academic Press, London,
1981.

4. R. S. Boyer and J S. Moore. Proof Checking the RSA Public Key Encryption
Algorithm. Technical Report ICSCA-CMP-33, Institute for Computing Science and
Computer Applications, University of Texas at Austin, 1982.

5. K. Godel. On Formally Undecidable Propositions of Principia Mathematica
and Related Systems. In From Frege to Goedel, J. van Heijenoort, Ed.,Harvard
University Press, Cambridge, Massachusetts, 1967.

6. G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers.
Oxford University Press, 1979.

7. D. E. Knuth and P. Bendix. Simple Word Problems in Universal Algebras.
In Computational Problems in Abstract Algebras, J. Leech, Ed.,Pergamon Press,
Oxford, 1970, pp. 263-297.

8. D. E. Knuth. The Art of Computer Programqknq. Volume 1/ Fundamental
Algorithms. Addison-Wesley Publishing Co., Reading, MA, 1973.

9. D. E. Knuth. The Art of Computer Programming. Volume 2/ Seminumerical
,' Algorithms. Addison-Wesley Publishing Co., Reading, MA, 1981.

10. J S. Moore. "A Mechanical Proof of the Termination of Takeuchi's
Function." Information ProcessinA Letters 9, 4 (1979), 176-181.

11. R. Rivest, A. Shamir, and L. Adleman. "A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems." Communications of the ACM 21, 2
(1978), 120-126.

• . . " , . { . . , .. .

: . ' ' " • c: : • -

DISTRIBUTION LIST

Defense Documentation Center (12 copies) Office of Naval Research
Cameron Station Branch Office, Chicago

Alexandria, VA 22314 536 South Clark Street
Chicago, IL 60605

Naval Research Laboratory (6 copies)

Technical Information Division Office of Naval Research
Code 2627 Western Regional Office
Washington, D.C. 20375 1030 East Green Street

Pasadena, CA 91106
Office of Naval Research (2 copies)
information Systems Program (437) Dr. A. L. Slafkosky
Arlington, VA 22217 Scientific Advisor

Commandant of the Marine Corps

Office of Naval Research Code RD-I

Code 200 Washington, D.C. 20380
Arlington, VA 22217

Naval Ocean Systems Center
Office of Naval Research Advanced Software Technology Div.
Code 455 Code 5200
Arlington, VA 22217 San Diego, CA 92152

Office of Naval Research Mr. E. H. Gleissner
Code 458 Naval Ship Research
Arlington, VA 22217 & Development Center

Computation and Mathematics Dept.

Office of Naval Research Bethesda, MD 20084

Eastern/Central Regional Office
Bldg 114, Section D Captain Grace M. Hopper (008)
666 Summer Street Naval Data Automation Command
Boston, MA 02210 Washington Navy Yard

Building 166
Washington, D.C. 20374

L1

%" .

